专题:同济大学高等数学竞赛
-
高等数学(同济大学教材第五版)复习提纲
高等数学(同济大学教材第五版)复习提纲 第一章 函数与极限 :正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限 第二章 导数与微分 :正确理解、熟练掌握
-
高等数学(同济大学教材第五版)复习提纲
高等数学(同济大学教材第五版)复习
提纲第一章 函数与极限 :正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限
第二章 导数与微分 :正确理解、熟练掌握 -
1-3高等数学同济大学第六版本
习题131 根据函数极限的定义证明lim(3x1)8x3lim(5x2)12x25 证明函数f(x)|x|当x0时极限为零证明 因为|f(x)0|||x|0||x||x0|所以要使|f(x)0| 只须|x|因为对0 使当0|x0|
-
同济大学第六版高等数学课后答案1-2
习题121 观察一般项xn如下的数列{xn}的变化趋势 写出它们的极限xn1n210解 当n时 xn10 limn2n2nxn(1)n1 n解 当n时 xn(1)n10 lim(1)n10 nnnxn21 n21)2解 当n时 xn21
-
大一高等数学竞赛策划
大一高等数学竞赛策划一、 目的及意义
高等数学是理工科基础中的基础,也是学科建设的基础。与物理、物化、工
程力学、传输原理、电工学等几乎所有理工科课程有关。03级实践 -
《高等数学》第六版 上册(同济大学出版社) 课件PPT
x1x1f(0) 1.解:limf(x)limsinlimx0x0x5x05551所以a 5x33x23x2313(x1)(x1)2.解:因lim 取k=2 limlimx1x1k(x1)k1(x1)kkx1(x1)k13(x1)(x1)3lim23 x12(x1)211113.解:y'f'(lnx),y''f'
-
2013年高等数学竞赛结果通知 A
常州大学2012-2013年度数学竞赛获奖名单 本部 机类(高等数学A) 一等奖(共34人) 谢敬涛(信管101)刘浩浩(机械教改121) 陈圆圆(机制101) 夏阳春(热能122) 宗文浩(储运113) 周 伟(储
-
大学 高等数学 竞赛训练 极限
大学生数学竞赛训练一(极限)一、计算解:因为原式又因为所以。二、计算解:因为所以。三、计算解:设,则因为,所以。四、计算解:因为,所以五、设数列定义如下证明:极限。证明:方法一、考虑
-
大学 高等数学 竞赛训练 试题
一、(本大题共4小题,每小题6分,共24分)计算下列各题(要求写出计算步骤)1)解:因为所以,原式2)设,求。解:因为…………所以。3)求,其中。解:4)求幂级数的和函数,并求级数的和。解:设,则有上式两边
-
大学 高等数学 竞赛训练 微分方程
大学生数学竞赛训练五—微分方程一、(15分)设函数在上可导,且,对任给的满足等式1)求导数;2)证明:当时,成立不等式:。解:1)设,则有当时有两边关于求导得解微分方程得由条件可得,因此2)当时,,所
-
大学 高等数学 竞赛训练 积分学
大学生数学竞赛训练三—积分学一、(15分)计算。解:原式二、(20分)设曲面和球面1)求位于内部的面积2)设,求位于内部的体积。解:1)解方程组得方法二、。2)此为旋转体的体积方法二、三、(15
-
大学 高等数学 竞赛训练 级数
大学生数学竞赛训练四—级数一、(20分)设1)证明:2)计算证明:1)设,因为所以,当时,为常数,即有(注意这里利用了极限)2)。二、(15分)设在点的一个邻域内有连续导数,且。证明:级数收敛,但级数发散。
-
高等数学竞赛感想(共5则)
高等数学竞赛(微积分竞赛)参赛感言 数学思维是数学学科的重要组成部分,其变换的形式以及严谨的结构逻辑是数学之美上的一颗璀璨明珠。本文简单阐述我对数学以及微积分,这个数学
-
2014年高等数学竞赛——专题五不等式
专题五不等式1. 设f(x)在 [0, 1]上连续,非负,单调减。
2.f(x)dxaf(x)dx(0a1) 00a1
babf(x)dx 3. 设f(x)在[a,b]上连续,单调增。求证:xf(x)dxa2ab
4. 设f(x)在 [0, 1]上可导,且 -
高等数学(同济大学版) 课程讲解 1.3函数的极限
课 时 授 课 计 划课次序号: 03一、课题:§1.3函数的极限二、课型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种
-
高等数学
《高等数学》是我校高职专业重要的基础课。经过我们高等数学教师的努力, 该课程在课程建设方面已走向成熟,教学质量逐步提高,在教学研究、教学管 理、教学改革方面,我们做了很
-
高等数学描述
高等数学(也称为微积分)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显
-
高等数学
考研数学:在基础上提高。 注重基础,是成功的必要条件。注重基础的考察是国家大型数学考试的特点,因此,在前期复习中,基础就成了第一要务。在这个复习基础的这个阶段中,考生可以对