专题:高考数学参数方程复习
-
高考复习专题人教版数学限时训练—参数方程几何证明
坐标系及参数方程(基础训练7)1.若直线的参数方程为x12ty23t2(t为参数),则直线的斜率为__3x2y7__-3/2__ x2sin2.将参数方程(为参数)化为普通方程为__yx2,(2x3)___2ysin3.点M的直角
-
2012高三数学第一轮复习(十三)坐标系与参数方程学案
2012高三数学第一轮复习(十三)坐标系与参数方程学案坐标系(第一课)一.基础知识梳理:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一
-
参数方程化为普通方程教案
课题:参数方程和普通方程的互化(一)教学目标:知识目标:掌握如何将参数方程化为普通方程;能力目标:掌握参数方程化为普通方程几种基本方法;情感目标:培养严密的逻辑思维习惯。教学重点
-
参数方程的概念(教案)
参数方程的概念 一、教学目标 知识与技能:通过大量的实例理解参数方程及参数的意义,并进行简单的应用。 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观
-
直线的参数方程教案[推荐]
直线的参数方程(一) 三动式学案 黄建伟 教学目标: 1. 联系向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应
-
高考数学复习点拨 判断方程表示的图形(最终定稿)
如何判断方程表示的图形 在实际解题中,有时判断给出方程的图形,如果是二元二次方程,虽然有点类似圆的一般式方程,实质上不为圆的方程,要想准确把握方程表示的图形,需进一步加深理
-
教案:2011高二数学选修4-4 参数方程的概念范文大全
一、 参数方程的概念 教学目标: 1.理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标; 2.能了解参数方程中参数的意义,运用参数思想解决有关问题; 重、难点: 理解参数
-
近五年(2017-2021)高考数学真题分类13 坐标系与参数方程
近五年(2017-2021)高考数学真题分类汇编十三、坐标系与参数方程一、单选题1.(2019·北京(理))已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是A.B.C.D.二、解答题2.(2021·全国(文))在
-
坐标系与参数方程(知识总结)
坐标系与参数方程专题坐标系与参数方程 【要点知识】 一、坐标系 1.平面直角坐标系中的伸缩变换 xx(0)设点P(x,y)是平面直角坐标系xOy中的任意一点,在变换:的作用yy(0)下,点P(
-
《2-3 直线的参数方程》教案
选修4-4 2-3直线的参数方程(第二课时) 一、教学目标: 知识与技能:掌握直线的参数方程。 过程与方法:.通过直线参数方程的应用,培养学生综合运用所学知识分析问题和解决问题的能力,
-
4.4.9圆锥曲线的参数方程 教案范文
第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察
-
极坐标与参数方程题型和方法归纳
极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:1、已知直线的参数方程为(为
-
简易方程整理和复习
简易方程的复习教学内容: 教材P83整理与复习及练习十八第3~9题。 教学目标: 知识与技能:使学生熟练掌握列方程解应用题的步骤。提高学生综合运用知识解决实际问题的能力。 过程
-
高考数学复习指导
在新一届高三复习过程中,以3个“是否”作为设立每章复习内容的基本目标:
1)学生是否注重用联系和理解的方法复习数学?2)学生是否依赖于死记硬背的方法复习数学?3)学生在复习策略方 -
高三数学教案:高考数学总复习第一讲:函数与方程.
学而思教育·学习改变命运 思考成就未来! 高考网www.xiexiebang.com 高考数学总复习第一讲:函数与方程 函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变
-
数学总复习方程与不等式专题测试
2014年中考数学总复习方程与不等式专题测试试卷
一、选择题 1.点
A(m4,12m)在第三象限,那么m值是。
A.mB.m4C.12
m4
D.m42.不等式组
x3的解集是x>a,则a的取值范围是。
xa
A.a≥3B.a=3C.a>3D.a 2- -
直线的参数方程教学设计[全文5篇]
《直线的参数方程》教学设计 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,
-
高考数学 专题 方程的根与函数的零点复习教学案5则范文
《方程的根与函数的零点》 本节课的教学重点有两个,一个是函数的零点、方程的根以及函数图象与x轴交点的横坐标三者的关系,另一个中心就是函数零点存在性定理。在教学设计上,