专题:高中数学函数导数专题
-
高中数学构造函数解决导数问题专题复习
高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数(Ⅰ)当时,
-
构造函数解导数
合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:
-
高中数学导数经典说课稿(合集五篇)
一、关于教学目的的确定: 对导数这个概念的理解可为今后高等数学的学习奠定基础,但由于学生没有学习过极限概念,对导数概念及其定义的数学语言表述的理解比较困难,这种理解上 的
-
高中数学函数知识点大全
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y
-
函数导数不等式测试题五篇
昌乐二中 高三 数学自主检测题函数、导数、不等式综合检测题2009.03.20注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题卡时,必须使用0.5毫米的黑色墨水签字笔书写,作图
-
常用函数的导数教学设计
几个常用函数的导数教学设计 一、课题引入 情境一:我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数yf(x),如何求它的
-
函数与导数综合问题
龙源期刊网 http://.cn
函数与导数综合问题
作者:
来源:《数学金刊·高考版》2013年第06期
深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识.
本考点 -
导数--函数的极值练习题
导数--函数的极值练习题
一、选择题
1.下列说法正确的是
A.当f′(x0)=0时,则f(x0)为f(x)的极大值 B.当f′(x0)=0时,则f(x0)为f(x)的极小值 C.当f′(x0)=0时,则f(x0)为f(x)的 -
高中数学导数专题讲义(答案版)
最新导数专题讲座内容汇总导数专题一、单调性问题【知识结构】【知识点】一、导函数代数意义:利用导函数的正负来判断原函数单调性;二、分类讨论求函数单调性:含参函数的单调性
-
高中数学二次函数教案
二次函数
一、 知识回顾
1、 二次函数的解析式
(1) 一般式:顶点式:双根式:求二次函数解析式的方法:
2、 二次函数的图像和性质
二次函数fxax2bxc(a0)的图像是一条抛物线,对称轴的方 -
高中数学函数知识点总结
高中数学函数知识点总结
(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函 -
高中数学新课标函数讲座高二数学讲座之导数与推理与证明student
高中数学新课标讲座之导数与推理与证明石嘴山市光明中学 潘学功高中数学新课标讲座之导数与推理与证明【基础回归】1.古希腊人常用小石子在沙滩上摆成各种形状来研究数。比如
-
高中数学新课标函数讲座高二数学讲座之复数导数推理与证明
高中数学新课标讲座之复数、推理与证明石嘴山市光明中学 潘学功高中数学新课标讲座之复数与推理与证明【基础回归】1、(2009广东)下列n的取值中,使i=1(i是虚数单位)的是A.n=22、
-
函数的导数和它的几何意义
2.8 函数的导数和它的几何意义 8-A 函数的导数 前一节中描述的例子给出了引进导数概念的方法。我们从至少定义在x-轴上的某个开区间(a,b)内的函数f(x)开始,然后我们在这个区间
-
函数的和差积商的导数教案
函数的和差积商的导数教案 教学目的 1.使学生学会根据函数的导数的定义推导出函数导数的四则运算法则; 2.使学生掌握函数导数的四则运算法则,并能熟练地运用这些法则去求由基本
-
几种常见函数的导数教案
几种常见函数的导数教案 教学目的 使学生应用由定义求导数的三个步骤推导四种常见函数的导数公式,掌握并能运用这四个公式正确求函数的导数. 教学重点和难点 掌握并熟记四种常
-
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(