专题:三角形四心的向量形式

  • 三角形四心的向量表示

    时间:2019-05-14 11:22:26 作者:会员上传

    从动和静两个角度看三角形中四“心”的向量表示平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形

  • 向量与三角形四心的一些结论

    时间:2019-05-14 15:55:15 作者:会员上传

    【一些结论】:以下皆是向量 1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外

  • 三角形的四心的向量表示[推荐5篇]

    时间:2019-05-12 06:54:44 作者:会员上传

    222(1)O为ABC的外心OAOBOC.外心(三条边垂直平分线交点) (2)O为ABC的重心OAOBOC0.重心(三条边中线交点) (3)O为ABC的垂心OAOBOBOCOCOA.垂心(高线交点)(4)O为ABC的内心aOAbOBcOC0.内心(角平分

  • 平面向量中的三角形四心问题(定稿)

    时间:2019-05-14 15:55:15 作者:会员上传

    平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,

  • 三角形内心的向量表示形式

    时间:2019-05-14 15:55:15 作者:会员上传

    三角形内心的向量表示形式 有这样一个高考题: 已知O,N,P在ABC所在平面内,且OAOBOC,NANBNC0,且PAPBPBPC,则点PCPAO,N,P依次是ABC的( ) (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂

  • 讲义---平面向量与三角形四心的交汇

    时间:2019-05-14 15:55:14 作者:会员上传

    讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的

  • 三角形外心、重心、垂心的向量形式

    时间:2019-05-13 13:18:01 作者:会员上传

    三角形外心、重心、垂心的向量形式已知△ABC,P为平面上的点,则(1)P为外心(2)P为重心(3)P为垂心证明 (1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,

  • 向量中的三角形心的问题

    时间:2019-05-14 15:55:14 作者:会员上传

    向量中的三角形“四心”问题 学习向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?你能证明吗?下面的几个结论也

  • 三角形“五心”的充要条件的向量表示

    时间:2019-05-14 15:55:14 作者:会员上传

    三角形“五心”的充要条件的向量表示 江苏省姜堰中学张圣官(225500) 让我们先来赏析一道颇有趣的向量题: 命题1:在ΔABC内任取一点O,证明:SAOASBOBSCOC0 „①(其中SA、SB、SC分别表

  • 高中数学:关于三角形的“四心”与平面向量的结合教案 苏教版必修5

    时间:2019-05-15 01:51:09 作者:会员上传

    关于三角形的“四心”与平面向量的结合 [关键字]高中|数学|平面向量|内心|外心|重心|垂心 [内容摘要]每年全国各地高考试卷中,都有不少习题与三角形的“四心”有关,学生在解

  • 向量与三角形的重心

    时间:2019-05-13 06:37:32 作者:会员上传

    向量与三角形的重心例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求证:G是△ABC的重心.证明:如图1所示,因为GAGBGC0,所以GA(GBGC).以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所

  • 三角形的三线四心及口诀(5篇)

    时间:2019-05-12 01:24:51 作者:会员上传

    三角形的三线、四心及口诀 内心是三条角平分线的交点,它到三边的距离相等。 外心是三条边垂直平分线的交点,它到三个顶点的距离相等。 (是充要条件) 重心是三条中线的交点,它到顶

  • 不等式 向量解三角形复习(推荐5篇)

    时间:2019-05-13 06:37:28 作者:会员上传

    一、不等式的解法:1.一元一次不等式:Ⅰ、axb(a0):⑴若a0,则;⑵若a0,则;Ⅱ、axb(a0):⑴若a0,则;⑵若a0,则;2.一元二次不等式:a0时的解集与有关(数形结合:二次函数、方程、不等式联系) 3. 高

  • 必修四向量知识点总结

    时间:2019-05-15 13:05:18 作者:会员上传

    知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。下面是必修四向量知识点总结,请参考!必修四向量知识点总结向量的向

  • 向量与三角形内心、外心、重心、垂心知识(★)

    时间:2019-05-15 07:58:51 作者:会员上传

    向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(

  • 三角形外心内心重心垂心与向量性质

    时间:2019-05-14 15:55:16 作者:会员上传

    三 角 形 的“四 心” 所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。 一、三角形的外心 定 义:三角形

  • 三角形面积公式的十五种形式

    时间:2019-05-15 09:31:41 作者:会员上传

    三角形面积公式的十五种形式 —— 一次数学研究性学习课总结 崔佃金 (山东省桓台第一中学 256400) 研究性学习是素质教育新形势下的一种全新的学习方式,是全面提高学生素质的有

  • 四心演讲稿

    时间:2019-05-14 19:29:59 作者:会员上传

    真心、用心、细心、恒心做事演讲稿 大家好,很高兴能和大家一起来探讨我个人对真心、用心、细心、恒心做事的一点肤浅的认识。 首先,我来说说真心。真心与朋友,有同事,与亲人交