专题:选修导数练习题
-
导数的练习题
1、1) f(x)=x
xx32,则f(x)2)已知f(x)=ln2x,则f’=,[f]’=
2'(2x3)';[sin(x2x)]'25[ln(2x1)]';[(2x1)]'
2. 曲线yx
x2在点(-1,-1)处的切线方程为
3.若曲线yx2axb在点(0,b)处的 -
选修2-2如何把导数大题做好
如何把导数大题做好
主要分四个步骤: 1、求定义域 2、判定单调性 3、求极值
4、求最值。下面是对上面四步进行系统的分析。1、求定义域。(无论我们做什么类的函数题,第一步必须 -
导数--函数的极值练习题
导数--函数的极值练习题
一、选择题
1.下列说法正确的是
A.当f′(x0)=0时,则f(x0)为f(x)的极大值 B.当f′(x0)=0时,则f(x0)为f(x)的极小值 C.当f′(x0)=0时,则f(x0)为f(x)的 -
常见函数的导数(选修2-2教案)
课题:常见函数的导数 一、教学目标:掌握初等函数的求导公式; 二、教学重难点:用定义推导常见函数的导数公式. 一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数
-
高中数学 3.3 计算导数教案 北师大选修11
3.3 计算导数 教学过程: 一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。 (1)求函数的改变量yf(xx)f(x) yf(xx)f(x) xxy(3)取极限,得导数y/=f(x
-
高中数学人教版选修2-2导数及其应用知识点总结(范文大全)
六安一中东校区高二数学选修2-2期末复习导数及其应用知识点必记1.函数的平均变化率为f(x2)f(x1)f(x1x)f(x1)yf xxx2x1x注1:其中x是自变量的改变量,可正,可负,可零。注2:函数的平均
-
选修五期末练习题5
学部一化学没有比脚更长的路 没有比人更高的山 选修五期末复习练习题(五) 香烃煤、石油、天燃气的综合利用 一、单项选择题 1.已知化合物B3N3H6(硼氮苯)与C6H6(苯)分子结构相似
-
人民版选修一戊戌变法练习题
戊戌变法练习题 1.戊戌变法失败的最主要的客观原因是 A.袁世凯出卖维新派 B.封建顽固势力非常强大 C.维新派的软弱妥协 D.帝国主义的破坏 2.戊戌政变发生后,百日维新的措施中
-
人民版选修一明治维新练习题
人民版选修一:明治维新一课一练 一、走向崩溃的幕府政权 1.19世纪中期、日本封建统治阶级中掌握实权的是 A.天皇B.将军 C.大名 D.武士 2.幕府统治出现危机的根本原因是 A资本主义生
-
2014高考导数
2014高考导数汇编
bex1
(全国新课标I卷,21)设函数f(x)aelnx,曲线yf(x)在点(1,f)处的xx
切线方程为ye(x1)2
(I)求a,b;
(II)证明:f(x)1
(全国新课标II卷,21)已知函数f(x)exex2x
(I)讨论f(x -
导数证明题
题目:已知x>1,证明x>ln(1+x)。
题型:
分值:
难度:
考点:
解题思路:令f(x)=x-ln(1+x)(x>1),根据它的导数的符号可得函数f(x)在
1)=1-ln2>0,从(1,+ )上的单调性,再根据函数的单调性得到函数f -
导数总结归纳大全
志不立,天下无可成之事!
类型二:求单调区间、极值、最值
例三、设x3是函数f(x)(xaxb)e
(1) 求a与b的关系式(用a表示b)
(2) 求f(x)的单调区间
(3) 设a0,求f(x)在区间0,4上的值域23x的一个 -
选修2-2第一章推理与证明练习题
推理与证明过关检测试题1.考察下列一组不等式: 252525,252525,2555332244332525,.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等3223式成为推广不等式的特
-
选修4-1几何证明选讲练习题
几何证明选讲专项练习1. (2008梅州一模文)如图所示,在四边形ABCD中,EF//BC,FG//AD,则EFBC+FGAD= 2. (2008广州一模文、理)在平行四边形ABCD中, 点E在边AB上,且AE:EB=1:2,DE与AC交于
-
成人高考—导数习题
2003年 (10)函数y2x3x21在x1处的导数为 (A)5 (B)2 (C)3 (D)4 2004年 (15)f(x)x33,则f= (A)27 (B)18 (C)16 2005年 (17)函数yx(x1)在x2处的导数值为(25)已知函数(fx)x4mx25,且f(2)24 (Ⅰ)求m的值
-
导数证明不等式
导数证明不等式一、当x>1时,证明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函数所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0时,x>ln(x+1)二、导
-
导数教学经验交流(推荐)
“整体建构”下导数教学 如果说高中数学是一座山峰,需要每个学子去攀登,那么导数无疑是阻碍在前方的悬崖峭壁之一,既充满挑战,又让许多同学望而却步。退却等于失败,而攀上峭壁更
-
导数典型题(本站推荐)
1. 已知函数f(x)alnx1(a0)
(I)若a=2,求函数f(x)在(e,f(e))处的切线方程;
1(Ⅱ)当x>0时,求证:f(x)1a(1) x2.设函数f(x)lnxx2ax(aR).(I)当a=3时,求函数f(x)的单调区间;
3(Ⅱ)若函数f(x